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Summary. An objective of many functional genomics studies is to estimate treatment-induced changes
in gene expression. cDNA arrays interrogate each tissue sample for the levels of mRNA for hundreds to
tens of thousands of genes, and the use of this technology leads to a multitude of treatment contrasts.
By-gene hypotheses tests evaluate the evidence supporting no effect, but selecting a significance level requires
dealing with the multitude of comparisons. The p-values from these tests order the genes such that a p-value
cutoff divides the genes into two sets. Ideally one set would contain the affected genes and the other would
contain the unaffected genes. However, the set of genes selected as affected will have false positives, i.e.,
genes that are not affected by treatment. Likewise, the other set of genes, selected as unaffected, will contain
false negatives, i.e., genes that are affected. A plot of the observed p-values (1 − p) versus their expectation
under a uniform [0, 1] distribution allows one to estimate the number of true null hypotheses. With this
estimate, the false positive rates and false negative rates associated with any p-value cutoff can be estimated.
When computed for a range of cutoffs, these rates summarize the ability of the study to resolve effects. In
our work, we are more interested in selecting most of the affected genes rather than protecting against a
few false positives. An optimum cutoff, i.e., the best set given the data, depends upon the relative cost of
falsely classifying a gene as affected versus the cost of falsely classifying a gene as unaffected. We select the
cutoff by a decision-theoretic method analogous to methods developed for receiver operating characteristic
curves. In addition, we estimate the false discovery rate and the false nondiscovery rate associated with any
cutoff value. Two functional genomics studies that were designed to assess a treatment effect are used to
illustrate how the methods allowed the investigators to determine a cutoff to suit their research goals.

Key words: Decision theory; False discovery rate; False nondiscovery rate; p-value plot; ROC curves;
Subset selection.

1. Introduction
The statistical analysis of gene expression data from cDNA
array experiments faces two challenges that arise from char-
acteristics of the technology. First, intensity measurements
representing levels of gene expression can be influenced by
confounding factors such as spatial heterogeneity and signal
saturation that arise from variability in the technically com-
plex steps involved in cDNA array methodology (Nguyen et
al., 2002). Second, cDNA array experiments simultaneously
interrogate many hundreds or thousands of genes. As a re-
sult, the chance for false discovery of genes perceived to be
differentially expressed between comparison groups can be
unacceptably high (Craig, Black, and Doerge, 2003). In this
article, we are concerned with the second challenge, that of
dealing with the multitude of statistical tests on individual
genes that typically arise with cDNA data. It will be assumed
that the first challenge has successfully been met through ap-
propriate normalization of the expression data (Chen et al.,
2003).

Statistical analysis of normalized gene expression data of-
ten begins with comparisons between two groups (e.g., treated
versus control, diseased tissue versus normal tissue) of the
multitude of genes by way of individual statistical tests (e.g.,
Student’s t-tests). Frequently, this first analysis is followed by
a second analysis that seeks to determine whether particular
genetic profiles (groups of coexpressed genes or functional re-
lationships among genes) are predictive of specific biological
outcomes. Often, this involves some type of clustering of genes
with similar expression patterns. An analysis of the first type
can serve as a screen to select a subset of genes for which to
conduct an analysis of the second type. This article will con-
sider statistical aspects of the first type of analysis, primarily
as a “filtering” exercise preliminary to a profiling analysis.

Because many individual tests assessing differential expres-
sion are conducted, the family-wise type I error rate (FWE:
the probability of making at least one false positive error)
can be very large. Statistical approaches that are customarily
used to control the FWE, such as the procedures of Holm
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(1979), Hochberg (1988), or Hommel (1988), were not de-
signed for thousands, or even hundreds, of individual com-
parisons. When applied to cDNA array data on a multitude
of genes, they will tend to screen out all but a handful of
genes that show extreme differential expression. If the objec-
tive is to identify a few genes that differ with treatment(s),
such an analysis may well be appropriate. If, on the other
hand, the objective is to determine functional relationships
among genes that have been affected by treatment, then other
selection criteria may be more appropriate. In particular, we
consider criteria that do not eliminate as many genes from fur-
ther analysis. Controlling the false discovery rate (FDR: the
expected proportion of incorrectly rejected null hypotheses)
has been proposed by Benjamini and Hochberg (1995) as an
alternative to controlling the FWE in multicomparison prob-
lems. The use of this approach in preliminary genome scans
has been discussed (Weller et al., 1998; Zaykin et al., 2000).
In addition, somewhat informal approaches for screening the
interrogated genes are sometimes used, such as eliminating
all but 100 genes with the largest t-statistics (Li and Taylor,
2001).

The need exists for statistical procedures to reliably elimi-
nate most of the unaffected genes from further consideration
while keeping essentially all genes whose functions are poten-
tially affected by the biological or toxicological phenomena
under study. This article proposes statistical methodology for
the analysis and interpretation of cDNA array data based on
the use of p-value plots (plots of significance probabilities ob-
tained from multiple individual tests) and receiver operating
characteristic (ROC) curves. The strategy is designed primar-
ily as a filter, to screen out many hundreds (or thousands) of
genes from consideration prior to genetic profiling; however,
it can also be used to identify a relatively small number of
truly differentially expressed genes.

2. Method
2.1 Expected Rates of Misclassification

in Testing Multiple Genes
In a study involving a hypothesis test that is repeated for m
genes, we assume that the null hypothesis is true (expression
is unaffected) for some genes, m0 genes, and false (expression
is affected) for the remainder, m − m0 genes. The p-values
that are generated from these tests, {pi : i=1, . . . ,m}, order
the genes, and standard practice is to reject the null hypoth-
esis for the genes where the p-value is less than a specified
significance level, i.e., pi < α. Thus, a choice of significance
level divides the genes into two sets: those declared to differ
significantly, mα genes, and those declared not to differ sig-
nificantly, m − mα genes. Ideally, the mα genes, which are
selected because of their small p-value, would correspond to
the m − m0 affected genes for which the null hypothesis is
false. However, it is expected from the definition of a p-value
that the mα selected genes will be contaminated with αm0

unaffected genes for which the null hypothesis is true. Table 1
gives expected numbers in a two-way classification of affected
and selected genes, where only the number of true hypotheses,
m0, is unknown.

Assuming that m0 can be estimated, then various misclas-
sification rates defined from the entries in Table 1 can be
estimated. The FDR estimates the proportion of the selected

Table 1
Expected numbers in a crossclassification of selected genes

with affected genes

Selected Not selected Total

Affected mα −αm0 m−m0 − (mα −αm0) m−m0
Not affected αm0 m0 −αm0 m0
Total mα m−mα m

genes that are expected to be false positives. Tsai, Hsueh,
and Chen (2003) investigated various formal definitions of
the FDR and associated statistical properties. We adopt what
Tsai et al. (2003) termed the empirical FDR for testing at level
α, that is,

FDR(α) =
αm0

mα

.

The expected proportion of affected genes among the genes
not selected, the false nondiscovery rate (FNR), is

FNR(α) =
m−m0 − (mα − αm0)

m−mα

.

The fraction of genes not selected (FNS) among the affected
genes is

FNS(α) =
m−m0 − (mα − αm0)

m−m0
.

The complement, 1 − FNS(α) = (mα − αm0)/(m − m0),
represents the sensitivity of the testing procedure, where 1 −
α is the specificity.

For our purposes, these rates are computed as a function
of the number of genes selected. Let p(k) denote the kth-order
statistic for the p-values, {pi : i=1, . . . ,m}. Then these mis-
classification rates can be defined for the set of genes deter-
mined by the k smallest p-values. This simply amounts to
substituting k for mα and p(k) for α in the previous formulae,
i.e.,

FDR(k) =
p(k) m0

k
, (1)

FNR(k) =
m−m0 − (k − p(k) m0)

m− k
, (2)

and

FNS(k) =
m−m0 − (k − p(k) m0)

m−m0
. (3)

These rates quantify the degree to which the selected genes
reflect the affected genes. Hence, they are basic summaries for
the study that can be computed from an estimate, say m̂0, of
the number of true null hypotheses.

The empirical FDR is a good approximation to the con-
ditional FDR, i.e., conditional on selecting k genes, without
the complexities of specifying distribution(s) under the alter-
native hypothesis (Tsai et al., 2003). It will suffice for most
applications and is used in the exposition of the proposed ap-
proach. The empirical estimates of FDR, FNR, and FNS only
approximate rigorously defined probabilities, so they some-
times take on values outside the interval [0, 1]. Generally this
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occurs at uninteresting values of α, e.g., α > 0.5, and in our
work such values are set to the appropriate boundary.

While it is important in genetic profiling to eliminate as
many nuisance genes from further consideration as possible
(low FDR), it is perhaps more important to ensure that few
of the genes that are differentially expressed are removed from
consideration prematurely (low FNR). Controlling the FDR
(or FNR) in the sense of Benjamini and Hochberg (2000) is
not the objective here. Rather, the rejection region is deter-
mined first, in the spirit of Storey (2002), and then corre-
sponding estimates of the FDR, FNR, and FNS are made. As
will be shown in the examples in Section 3, the success of the
proposed strategy depends on having a good estimate of m0.

2.2 Estimating the Number of True Null Hypotheses
Schweder and Spjotvoll (1982) plotted i versus q(i) = 1 −
p(m−i+1), which they called a p-value plot. Under the null
hypothesis (also assumes independence between tests), the
p-values are distributed uniformly over the interval [0, 1].
Under this uniform distribution, the expected value of q(i) is
i/m. Linearity in a p-value plot indicates agreement between
the empirical cumulative distribution of the p-values and the
cumulative uniform distribution. In this context one can test
whether m0 = m, i.e., that none of the genes are affected by
treatment. For example, the Kolmogorov statistic,

Dmax = max
i

{∣∣∣q(i) −
i

m

∣∣∣ : i = 1, . . . ,m
}
,

could be used for this purpose (Conover, 1971).
More often, observed p-values will be a mixture of m0 ob-

servations from the null distribution, i.e., uniform [0,1], and
m − m0 observations from alternative distributions, which
provide more support for smaller p-values. As a didactic de-
vice suppose that the m − m0 p-values from alternative dis-
tributions are always less than 1 − π. Then smaller values
in the Schweder and Spjotvoll plot, i.e., q(i) < π, are from
the null distribution, and their distribution on this subinter-
val is equivalent to a sample that is uniformly distributed
on the interval [0, π]. Hence, the plot will be linear in this
range and will have slope m0. Furthermore, the number of
genes with q(i) < π, say k, has expectation, πm0, and vari-
ance, m0π(1 − π). This suggests an estimate for the number
of true null hypotheses, m̂0 = k/π (Schweder and Spjotvoll,
1982), i.e., the estimated slope of the p-value plot in the linear
range.

Figure 1 is a Schweder and Spjotvoll plot that was com-
puter generated under the scenario outlined above with π =
0.8, m0 = 500, and m = 1000. In particular, {qi : i=1, . . . ,m}
is a mixture of 500 random samples from a uniform [0, 1], i.e.,
representing the null distribution, and 500 samples from a uni-
form [0.8, 1], i.e., representing an alternative distribution al-
beit somewhat artificial. This figure illustrates the basic ideas
in a setting that is unencumbered by complications that are
usually present in actual studies. The empirical cumulative
distribution of the {qi : i = 1, . . . ,m}, henceforth denoted by
F̂ (q), is the irregular curve. The expected “null hypothesis”
component of F̂ (q) is the dashed line that connects the origin
to the point (q = 1, i = 500). For q < 0.8, F̂ (q) is consistent
with this line. Hence, a linear approximation to F̂ (q) provides
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Figure 1. Schweder and Spjotvoll plot of simulated data,
500 observations with a uniform distribution on [0, 1] and 500
observations with a uniform distribution on [0.8, 1]. Expected
values for a uniform distribution on [0, 1] (dashed line) for
500 observations.

an estimate of m0, where it intersects the right-hand vertical
axis.

The estimate of m0 that was suggested above, namely
m̂0 = k/π, is such an estimate when π is known. It corre-
sponds to a line (not shown) connecting the origin to m̂0 on
the right-hand vertical axis. Although somewhat informal, a
visual inspection of a p-value plot to assess the region of lin-
earity, i.e., a visual assessment of π, produces reasonable esti-
mates of m0. This simple procedure works well with the sim-
ulated data (Figure 1). Serious departures from an expected
Schweder and Spjotvoll plot will diagnose data sets where es-
timating m0 is problematic.

Recently, there has been a revival of interest in algo-
rithms for estimating m0. Hsueh, Chen, and Kodell (2003)
investigated several methods (Schweder and Spjotvoll, 1982;
Benjamini and Hochberg, 2000; Storey, 2002). They showed
via Monte Carlo simulation that their own least squares (LS)
method that uses information from both null and alternative
distributions was the least biased method. For the sake of
computational clarity, the LS method of Hsueh et al. (2003)
will be adopted and used for further development and illus-
tration of the proposed testing strategy. However, we caution
against an uncritical use of any procedure. The Schweder and
Spjotvoll plot should always be evaluated, and the estimated
m0 should be reasonable in the context of the plot. During the
review of this article, we became aware of a mixture-model ap-
proach to the estimation of m0 (Allison et al., 2002), which
also gives reasonable estimates in many cases.

2.3 Using ROC Curves to Determine
an Optimal p-Value Cutoff

ROC curves, which originated in the context of electronic
signal detection, are commonly used in medicine to assess
the quality of clinical diagnostic tests (Zweig and Campbell,
1993). ROC curves are derived from large groups of pa-
tients whose disease status (positive or negative) is known, by
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plotting the true positive rate (sensitivity) of a diagnostic
test against the test’s false positive rate (1 − specificity) for
various decision thresholds, or cutoff values, of the test. An
ROC-like strategy can be adapted to the present context
by substituting gene-specific hypotheses for patients and p-
values for diagnostic test results. False null hypotheses (af-
fected genes) correspond to patients having the disease and
true null hypotheses (unaffected genes) to patients without
the disease. Unlike the diagnostic testing setting, the truth or
falseness of each hypothesis is unknown; however, having an
estimate of the number of true hypotheses enables the con-
struction and use of ROC curves in the present context.

One way to construct an ROC plot for a cDNA array ex-
periment is to plot the estimated sensitivity,

1 − FNS(k) =
k − p(k) m̂0

m− m̂0
,

against 1 − specificity, i.e., p(k). This gives a nonparametric
ROC curve. The closer an ROC curve is to the top-left corner
of the unit square the better the quality of the experiment
in differentiating false from true hypotheses. The closer the
curve is to the 45◦ diagonal the less able the experimental
data to resolve differences. The area under an ROC plot can
be used as a measure of test quality and provides a basis
for comparison of different diagnostic procedures (Zweig and
Campbell, 1993) or, in this case, different hypothesis tests
about the genes. Factors that may contribute to differences
in areas under the curves include effect sizes, sample sizes,
and underlying variability.

In addition to the FDR and FNR, the presently defined
ROC curve is a tool derived from the estimate of m0 that
can be used in deciding which genes to declare significantly
affected, that is, which cutoff to use. Let FP$ and FN$ de-
note, respectively, the costs of false positive and false negative
errors, which may be combinations of dollar costs and other
factors. An “optimal” cutoff, p(k), can be found by identifying
the combination of sensitivity and specificity that minimizes
the total expected cost of making errors, i.e.,

Prob(accept a false null hypothesis) ·FN$

+Prob(reject a true null hypothesis) ·FP$

= Prob(false) ·Prob(accept | false) ·FN$

+Prob(true)(Prob(reject | true) ·FP$

= P · (1 − Se) ·FN$ + (1 − P ) · (1 − Sp) ·FP$,

where P is the proportion of p-values that correspond to false
hypotheses, Se stands for sensitivity, and Sp for specificity.
One can show that the minimum of the cost function is defined
by

Se =
FP$

FN$

1 − P

P
(1 − Sp) + C,

that is,

Se =
FP$

FN$

m0

m−m0
(1 − Sp) + C,

where C is the maximum Se intercept among lines that inter-
sect the ROC curve and have positive slope, (FP$/FN$) ×

[m0/(m − m0)]. Hence, the point (1 − Sp, Se) correspond-
ing to the optimal cutoff value, p(k), may be found by moving
a line with the above slope down from above and from the
left of the ROC plot until it intersects the plot (Zweig and
Campbell, 1993). Using the ratio of the costs of false posi-
tive and false negative errors, along with the odds of a true
hypothesis, m0/(m − m0), enables an investigator to choose
a decision threshold in an alternative, but complementary,
manner to choosing one based on the FDR and FNR. Clearly,
the slope of the line defining the optimal cutoff point will ap-
proach unity as the weights on (1 − Se) and (1 − Sp) in the
above cost function, i.e., P · FN$ = [(m−m0) /m] · FN$ and
(1 − P ) · FP$ = (m0/m) · FP$, approach equality.

If the profiling analysis that is to be conducted on the se-
lected genes will focus less on individual genes and more on
combinations of genes (e.g., data mining), then the FP$/FN$
ratio might be substantially less than unity because little pre-
liminary filtering may be necessary or desirable. The cor-
responding FDR (FNR) will tend to be large (small). If,
on the other hand, follow-up verification of observed ex-
pression changes is planned (e.g., quantitative reverse tran-
scription polymerase chain reaction), then the filtering will
need to be heavy, i.e., the FP$/FN$ ratio could be sub-
stantially greater than unity. The corresponding FDR (FNR)
will tend to be small (large). In the first case, simply con-
trolling the FWE to select genes for a profiling analysis
would not be useful and in the second case it might be
too restrictive. Without an estimate of m0, little insight into
the consequences of an FWE-controlling strategy could be
gained. The decision-theoretic ROC strategy, which is en-
abled by having an estimate of m0 derived from a p-value
plot, allows an investigator to strike an appropriate bal-
ance between the FP$ and FN$. Corresponding estimates of
the FDR and FNR inform the investigator of the expected
consequences of selecting particular cutoff thresholds for
filtering.

3. Examples
Our estimate of m0 and its use in selecting affected genes is
illustrated with data from a study that interrogated expres-
sion of 1185 genes in several regions of the rat brain following
amphetamine or saline treatment (Jakab and Bowyer, 2002;
Delongchamp, Harris, and Bower, 2003; Bowyer et al., 2004).
Figure 2a plots q(i) versus i/m for the hypothesis test of a
treatment difference in gene expression in the posteriolateral
cortical amygdaloid nucleus (PLCo). The plot has values for
752 genes, which represents an “expressed” subset of the 1185
interrogated genes. That is, this subset represents genes that
were judged as being expressed above background in at least
one of studied brain tissues (Delongchamp et al., 2003). In
our original analyses of these data, we estimated m0 using the
least slope estimate of Hochberg and Benjamini (1990). Their
admittedly conservative procedure, which was devised mainly
to sharpen sequentially rejective procedures (Hochberg and
Benjamini, 1990), gave an estimate of 739. This is shown by
the dashed line in Figure 2a. The LS estimate of Hsueh et al.
(2003), m̂0 = 645, is depicted by the right-hand intercept of
the solid straight line in Figure 2a. It is evident in the graph
that this estimate, 645, fits the lower q(i) values better than
739. Curvature over the range of this graph suggests that the



778 Biometrics, September 2004

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0

150

301

451

602

752

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

ii/m

q
(i)

(a)

(c)(b)

1 
- 

F
N

S
(k

)

p
(k)

(0.157, 0.752)

(182, 0.047)

E
rr

or
 R

at
e

k

(182, 0.248)

(182, 0.558)

Figure 2. (a) Schweder and Spjotvoll plot for the 752 hypothesis tests that amphetamine treatment affects gene expression
in the rat PLCo. Expected values for a uniform distribution (solid line) using the least squares method of Hsueh et al.,
m̂0 = 645, and expected values for a uniform distribution (dashed line) using the least slope estimate of Benjamini and
Hochberg, m̂0 = 739. (b) The false discovery rate (◦), false nondiscovery rate (•), and proportion of missed genes (∆) using
m̂0 = 645. (c) ROC curves for the hypotheses that amphetamine treatment affects gene expression in the rat PLCo. The
optimum rejection level assuming FN$ = 3FP$ is the intersection of the solid line with the ROC curve.

conceptual uniform distribution is contaminated throughout.
Nevertheless, the observed p-values are reasonably consistent
with a mixture of 645 uniform deviates contaminated with
107 p-values from a distribution with stochastically smaller
p-values.

The practical issue is how well can we identify the 100+
affected genes that are implied by Figure 2a. Assuming 645
true null hypotheses, Figure 2b plots estimates of the FDR,
FNR, and FNS as functions of the number of selected genes,
equations (1), (2), and (3), respectively. Since the FDR never
dips below 0.30, any p-value-based selection of “affected”
genes will include many false positives. In Delongchamp et al.
(2003), we exploited the dip in the FDR that occurs in these
data and chose k = 50. This choice minimized the FDR for
k > 0 and yields a somewhat conventional p-value, p(50) =
0.025. Typically, the minimum for the FDR occurs at the
boundary, so this criterion is not generally applicable. We
also considered sets that select “all affected genes.” Figure 2b
indicates that selecting half of the genes (k = 376) would cap-
ture 95% of the affected genes, 1 − FNS(376) = 0.952. This
list implies a p-value cutoff of p(376) = 0.425. Although this

list is mostly false positives, FDR(376) = 0.729, it halves the
number of selected genes with few of the affected genes being
misclassified, and it may be a reasonable starting place for as-
certaining affected biological processes that involve multiple
genes.

A more formal approach is to use the ROC curve, as de-
scribed in Section 2. Figure 2c gives the nonparametric ROC
plot for the 752 expressed genes in the PLCo region of the
brain. Because we place a higher cost on prematurely dis-
carding potentially important genes than on falsely selecting
unimportant genes, we take FN$ = 3FP$. These relative costs
give the optimal slope of the Se versus (1 − Sp) line as (1/3)
[645/(752 − 645)] = 2.01. The desired intersection of the ROC
and this line will be around (1 − Sp, Se) = (0.157, 0.752), i.e.,
a cutoff of p(k) = 0.157. The FNS is the complement of the
sensitivity. So, Se = 0.752 corresponds to FNS(k) = 0.248.
From Figure 2b, this corresponds to selecting k = 182 of the
752 genes as significantly affected by treatment. In the sense
of FP$ and FN$ trade-offs, this would be optimal.

From Figure 2b, the FDR and FNR values at k = 182 would
be 0.558 and 0.047, respectively. Thus, it is estimated that 102
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Figure 3. (a) Schweder and Spjotvoll plot for the 705 hypothesis tests that cisplatin affects gene expression in rat kidney.
Expected values for a uniform distribution (solid line) using the least squares method of Hsueh et al., m̂0 = 509, and expected
values for a uniform distribution (dashed line) using a version of an estimate of Storey, m̂0 = 432. (b) The false discovery rate
(◦), false nondiscovery rate (•), and proportion of missed genes (∆) using m̂0 = 432. (c) ROC curves for the hypothesis that
cisplatin affects gene expression in rat kidney. The optimum rejection level assuming FN$ = 3FP$ is the intersection of the
solid line with the ROC curve and the optimum rejection level assuming 3FN$ = FP$ is the intersection of the dashed line
with the ROC curve.

of the 182 selected genes may be false positives, which means
that approximately 80 of the estimated 107 affected genes are
included. On the other hand, of the 570 genes not selected,
it is estimated that 27 are truly affected genes that are not
selected.

The second example is a toxicogenomic study of gene ex-
pression levels in kidney samples from rats dosed with cis-
platin (Thompson, Mirsky, and Sistare, 2002; Chen et al.,
2003; Hsueh et al., 2003). This study interrogated 700 rat
genes plus five genes from other species to monitor nonspecific
background binding of labeled DNA. Figure 3a plots p-values
from the two-sample t-test of treatment versus control. The
LS estimate, m̂0 = 509, is depicted as the right-hand inter-
cept of the solid line. The computation of this estimate and
several alternatives are discussed in the context of these data
elsewhere (Hsueh et al., 2003). Visual inspection of Figure 3a
suggests that a smaller value of m0, such as the dashed line
representing m̂0 = 432, is more consistent with a hypothesized
uniform distribution among lower values of q(i). The estimate,
m̂0 = 432, is a version of an estimate of Storey (2002) that is

discussed in Hsueh et al. (2003). The point is that a given
method may not produce the “best” estimate with all data
sets. Here, “best” means agreement with a uniform distribu-
tion in the lower values of q(i). So for this illustration, we will
use m̂0 = 432.

Figure 3b plots the FDR, FNR, and FNS as functions of
the number of selected genes. In this case, the differences are
resolved well enough that most genes can be identified. The
ROC curve in Figure 3c reflects the higher resolving power of
the test compared to the first example, in that the curve in
the upper left-hand corner of the plot is well off the diagonal.
Using the same ratio of cost functions as above, the optimal
slope is estimated to be (1/3)[432/(705 − 432)] = 0.527. This
slope is shallow enough that intersection of the line with the
ROC plot occurs near maximum sensitivity, at a p-value cutoff
of 0.243. This corresponds to selecting 370 genes as being
affected, which can be approximated using Figure 3b. From
Figure 3b, the corresponding FDR is 0.284, and the FNR and
FNS rates are small, 0.024 and 0.030, reflecting the higher cost
assigned to false negatives. Inverting the cost ratio gives the
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optimal slope, 3[432/(705 − 432)] = 4.747, which corresponds
to a p-value cutoff of 0.022 and the selection of 187 genes. This
choice assigns higher costs to false positives and gives FDR =
0.051, FNR = 0.184, and FNS = 0.350.

4. Discussion
The methodology proposed herein is predicated on estimating
the number of true null hypotheses, m0, among a multitude of
tests for individual genes in a cDNA array experiment. The
p-value plot from these tests is a basic tool for estimating m0

and helps to turn a multiple-comparison liability into an as-
set in that the large number of tests (the liability) gives the
p-value plot good resolution (the asset). The large number
of comparisons also gives good resolution to ROC-like curves
used to estimate optimal cutoff points for declaring statisti-
cal significance. The utility of these methods was illustrated
with expression data from two studies, one using radiolabeled
macroarrays (Figure 2) and the other labeling microarrays
using two fluorescent dyes (Figure 3).

No variance estimates have been proposed for the estimates
of m0 discussed in Hsueh et al. (2003). To our knowledge, none
have been published. In some of our work, we have employed
a somewhat ad hoc estimate based on the binomial variance,
var(k) = m0π (1 − π), where π is estimated from the “lin-
ear range.” This approach results in var(m̂0) ≈ k(1 − π̂)/π̂2.
When the m genes are independent, simulations indicate that
Wald-type confidence intervals for m0 are reasonably accurate
(results not shown). Since this calculation does not account
for the variance inflation associated with correlations among
genes, it would be too small in general. Simulated values of
the variance were reported for each of the estimates of m0

studied by Hsueh et al. (2003), including the methods used in
the two examples of Section 3. The effect of this variation on
the estimation of variously defined FDRs was simulated in a
follow-up study by Tsai et al. (2003). Their results indicated
that estimates of m0 and the FDR are sufficiently reproducible
to be useful in a filtering analysis. Nevertheless, because es-
timates of not only the FDR but also the FNR and FNS are
affected by the error in estimation of m0, this is an area where
further research is needed.

In addition to being used to estimate the number of true
null hypotheses, determine appropriate cutoffs, and estimate
associated misclassification error rates, p-value plots and ROC
curves also give information on the general quality of the data
for resolving differences. The ability to distinguish differences
in gene expression in the second example was better than in
the first example. This appears as a departure from linearity
that is larger for the p-value plot in Figure 3a than the plot
in Figure 2a. Similarly, the ROC curve in Figure 3c is farther
from the diagonal and has more area underneath it than the
ROC curve in Figure 2c, indicating the higher “diagnostic”
quality of the curve in Figure 3c. This difference in resolu-
tion would be expected from the toxicity associated with the
treatments used in these two studies and it is unlikely to be
due to inherent differences in macroarrays versus microarrays.
In the macroarray experiment (Figure 2), the gene expres-
sion in brain tissue of the control rats was compared to the
same tissue in rats treated with a moderate neurotoxin. In the
microarray experiment (Figure 3), control kidney tissue was
compared to exposed tissue 7 days after 5 mg/kg cisplatin

exposure, known to be toxic to the kidney. In general, p-value
plots and ROC curves derived from cDNA array data become
more informative as the number of replications increases and
the average treatment effect size increases.

Real data sets are more complicated than the simulated
data in Figure 1. Three complications occur with some regu-
larity: (1) The statistical test will have limited power to dis-
tinguish the treatment effects for some genes, (2) the statis-
tical tests are correlated, and (3) the null distribution of the
p-values is not uniform. These complications muddy the inter-
pretation of the resultant plots, but the plot generally remains
a useful summary of the observed data.

The first complication implies that there will be some large
p-values from the alternative distributions. In more extreme
cases, there may not be an obvious “linear range” interval
that is not contaminated by p-values from the alternative dis-
tribution. This contamination is seen as upward curvature
throughout the interval [0, 1]. The plot in Figure 2a illus-
trates this behavior for an experiment which was interpreted
further in Section 3. Upward curvature is the trademark
symptom that the null hypothesis is not true for some of
the genes. Curvature throughout the range of p-values im-
plies that the study lacks sufficient power to resolve many of
the effects. For most estimation methods, this type of curva-
ture tends to bias m̂0 such that it overestimates the number
of null hypotheses. Hence, the plot indicates that there are at
least m− m̂0 affected genes, and the rates, FDR(k), FNR(k),
and FNS(k), quantify the ability of the observed p-values to
identify these genes. For a given effect size, this bias becomes
negligible as the sample sizes increase.

Correlations among the genes arise because all of the genes
are measured on the same array and in the same sample.
Hence, gene-by-gene tests to assess differential expression are
correlated to some degree. Correlation is also induced by the
normalization that is typically applied to array data. Hsueh
et al. (2003) simulated correlated data and they observed that
moderate correlations among tests can substantially increase
the variance of m̂0 but they do not affect its expectation.
Hence, lack of independence does not bias estimates of m0. In
our experience, the correlations observed among genes rarely
exceed 0.25, which is at or below the simulated correlations
(Hsueh et al., 2003; Tsai et al., 2003).

A nonuniform null distribution, the third complication, is
observed as an unusual shape in the p-value plot, e.g., in-
verted u-shapes (convex) or inverted s-shapes. Essentially, any
p-value plot where the empirical cumulative distribution rises
significantly above the diagonal indicates problems with the
assumption that the null distribution is uniform. A nonuni-
form null distribution indicates that the test statistic does not
have the assumed distribution, and one should review test as-
sumptions. An incorrectly specified model is one way that this
problem arises and this should be ruled out. In our work, the
experimental design may include replicate measurements on
each experimental unit and it deals with components of vari-
ation associated with normalization, array, dye, and batch, as
well as treatment effects. Under more ad hoc designs, there
may be sources of variance that are not accounted for, and
quite possibly cannot be accounted for by any attempt at
normalization or modeling. Even in a “correctly” specified
model, convex shapes can occur. Often, the test statistic is
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based upon a few degrees of freedom, and asymptotic nor-
mality may not be adequately realized. Bootstrapping or non-
parametric alternatives may correct this although the more
egregious cases often have too few degrees of freedom for such
methods to have any power. In addition, measurements vary
in precision from array to array and the assumption of con-
stant residual variance will generally be problematic. We have
attempted several variance-weighting schemes in a few cases
where we presumed that this was the source of the problem
with the p-value plot, but these attempted fixes were not very
effective. When the plot cannot be “fixed,” it still alerts the
analyst to a problem with the null distribution, which has
implications for virtually any procedure that addresses mul-
tiple comparisons. If the departure from a uniform is concave
instead of convex, it is unlikely to be recognized as a problem
with the null distribution unless there is an a priori reason
to expect most genes to have null p-values. It is too common
among the published microarray studies to find tests based
upon inappropriate estimates of the within-treatment varia-
tion. Usually, these estimates underestimate the relevant vari-
ation and this wreaks havoc on p-value interpretations that
presume uniformity under the null.

The multiple-testing strategy proposed herein provides a
summary of hypothesis-testing results in a way that neither
sacrifices statistical power needlessly nor inflates the false pos-
itive error rate haphazardly. Although the strategy may be
used even if the desire is to identify relatively few highly dif-
ferentially expressed genes, the analysis is mainly intended
for applications in which the desire is to identify a pool of
potentially important genes for follow-up testing or for ge-
netic profiling. A decision-theoretic method is provided for
taking into account the relative costs of false positive and
false negative misclassifications of genes in determining cut-
off points. Relevant misclassification rates can be estimated
as a way to characterize the reliability of the findings. Im-
portantly, selection of statistical significance levels need not
be made a priori, in that the objective is not to control error
rates at some prespecified levels. Rather, the objective is to al-
low decision criteria to be chosen after the data are observed,
and then to estimate corresponding error rates specifically for
the observed data. This approach allows flexibility in analyz-
ing expression data, guiding follow-up analyses or additional
studies to retain genes with changes, albeit less statistically
evident.

Résumé

Un objectif de la plupart des études de génomique fonction-
nelle consiste à estimer les modifications dans l’expression
des gènes induites par le traitement. Les puces à cDNA
étudient la quantité de mRNA pour des centaines ou même
des dizaines de milliers de gènes dans chaque échantillon tis-
sulaire, et cette technologie conduit à une multitude de con-
trastes thérapeutiques. Les tests d’hypothèses pour chaque
gène évaluent l’évidence en faveur d’une absence d’effet mais
le choix d’un niveau de signification est délicat en raison du
nombre de comparaisons effectuées. Les degrés de signification
de ces tests permettent de classer les gènes de telle façon qu’un
seuil donné divise les gènes en deux groupes. Idéalement, un
groupe devrait contenir les gènes affectés par le traitement et
l’autre les gènes non affectés. Cependant, le groupe de gènes

sélectionnés comme affectés contiendra un certain nombre de
faux positifs, i.e. des gènes qui en réalité ne sont pas affectés
par le traitement. Symétriquement, l’autre groupe de gènes,
sélectionnés comme non affectés par le traitement, contiendra
des faux négatifs, i.e. des gènes en réalité affectés. Un graphe
des p-values (1-p) vs. leur espérance sous une distribution uni-
forme [0; 1] permet d’estimer le nombre d’hypothèses nulles
vraies. Avec cette estimation, le taux de faux positifs et le
taux de faux négatifs associés avec n’importe quel seuil de
sélection, i.e. une p-value donnée séparant les gènes ne deux
groupes, peut être estimé. Si l’on répète cette classification
pour une large étendue de seuils, ces taux résument la ca-
pacité de l’étude à identifier les effets réels. Dans ce travail,
nous sommes plus intéressés par sélectionner les gènes affectés
que par se protéger des quelques faux positifs. Un seuil opti-
mal dépend du coût relatif de classer à tort un gène comme
affecté versus le coût de classer à tort un gène comme non af-
fecté. Nous proposons de sélectionner ce seuil par une méthode
analogue aux méthodes développées pour les courbes ROC.
De plus, nous estimons le taux de faux positifs et le taux
de faux négatifs associés pour n’importe quel valeur du seuil.
Deux études de génomique fonctionnelle dont l’objectif était
d’évaluer l’effet d’un traitement sont utilisées pour illustrer
comment les différentes méthodes permettent aux investiga-
teurs de choisir un seuil qui correspond le mieux à leur objectif
de recherche.
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